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Abstract. This paper describes the participation of our team - MIAR
ICT in the ImageCLEF 2013 Robot Vision Challenge. The task of the
Challenge asked participants to classify imaged indoor scenes and recog-
nize the prede�ned objects appeared in the imaged scene. Ourapproach
is based on the recently proposed Kernel Descriptors framework, which
is an e�ective representation for images. For the provided v isual and
depth sequences, we make a simple fusion at feature level. Then we use
Linear Support Vector Machine (L-SVM) classi�ers for both s cene clas-
si�cation and object recognition. At last, the temporal con tinuity of the
given sequences is considered. Our team ranked the �rst among all the
participants, showing the e�ectiveness of our proposed scheme.

Keywords: kernel descriptor, scene classi�cation, object recogniti on,
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1 Introduction

In the 5th Robot Vision Challenge of the ImageCLEF 2013, image sequences were
captured by a perspective camera and a Kinect[1] mounted on amobile robot
within an o�ce environment. Visual (RGB) images and depth im ages generated
from 3D point clouds were available. Training sequences were labelled not only
with semantic labels (corridor, kitchen, o�ce, etc.) but al so with the objects that
were represented in them (fridge, chair, computer, etc.). The test sequence were
acquired within the same building and �oor, but there could be variations in
the lighting conditions (very bright places or very dark ones) or the acquisition
procedure (clockwise and counter clockwise). Given test sequences, participants
were asked to classify di�erent indoor scenes, and judge theexistence of the
given objects within each image.

This paper describes the participation of our team in the Robot Vision Chal-
lenge. For the image features extraction part, we used the state-of-the-art Kernel
Descriptors[2] framework, which has proven to be useful formany problems with
RGB-D (visual and depth) information[9]. We applied L-SVM[ 11] for classi�ca-
tion, and the temporal continuity is utilized during the cla ssi�cation stage.

The rest part of this paper is organized as follows. In Section 2, we brie�y
give a overview of our classi�cation system. In Section 3, wedescribe in detail
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Fig. 1. Training stage of scene classi�cation.

the image feature we used in our scheme. In Section 4 we describe how we apply
classi�er for both two tasks, and how we make use of the temporal continuity.
In Section 5, we give some of our experiments and show our �nalresult on test
sequence. In Section 6, we draw some conclusions.

2 Overview

In this section, we describe the procedure of our scheme. Both scene classi�cation
and object recognition tasks can be solved using classi�cation framework based
on supervised learning. The training stage for scene classi�cation is shown in
Fig.1 and the test stage is shown in Fig.2. Framework for the recognition of each
object is similar, except that training labels and predicted labels are replaced
by the existence of each prede�ned object.

During the preprocessing stage of our scheme, the given 3D Point Cloud data
are transformed to depth images,which afterwards will be treated as grayscale
images. Then for both visual images and depth images, we extract Kernel De-
scriptors [2] as local descriptors, and use e�cient match kernels (EMK) to trans-
form and aggregate the descriptors to the features of images. We represent each
frame by concatenating the two kinds of features extracted from each visual im-
age and depth image. Then we choose L-SVM as our classi�er forboth scene
classi�cation and object recognition. In consideration of temporal continuity, we
assign the averaged L-SVM scores of one frame's temporal neighbors to its �nal
score. More details of our scheme will be described in the following sections.
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3 Image Features

In this section, we describe the features of image, which have been used in our
work. The feature extraction procedure consists of two steps. The �rst step is to
design match kernels using pixel attributes, and the secondis to learn compact
features.

3.1 Kernel descriptors

Kernel descriptors are able to generate rich patch-level features from di�erent
types of pixel attributes. For visual images, we use gradient, local binary pattern
(LBP)[8] and color kernels. For depth images, we use depth gradient, depth LBP,
spin/surface normal kernels.

The gradient match kernel is:

K grad (P; Q) =
X

p2 P

X

q2 Q

~m (p) ~m (q) ko
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where P and Q are the set of nearby points around the reference point�p
and �p, respectively . kp (p; q) = exp

�
� 
 pkp= qk2

�
is a Gaussian position kernel

with z denoting the 2D position of a pixel in an image patch (normalized to
[0; 1]), and ko (� (p) ; � (q)) = exp

�
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 ok� (p) = � (q) k2

�
is a Gaussian kernel over

orientations.
Kernel view of orientation histograms provides a way to turn pixel attributes

into patch-level features, which can also be extended to LBPmatch kernel:
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where ~s = s (p) =
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p2 P s (p)2 + � s,s (p) is the standard deviation of values

in the 3 � 3 neighborhood aroundp ,� s is a small constant, and b(p) is a bi-
nary column vector which binarizes the pixel value di�erences in a local window
around p.

Similar to gradient and LBP kernels, the color match kernel can be formu-
lated as:

K col (P; Q) =
X

p2 P

X

q2 Q

kc (c(p) ; c(q)) kp (p; q) ; (3)

wherec(p) is the pixel color at position z (intensity for gray images and RGB
values for color images).kp (c(p) ; c(q)) = exp(� 
 ckc(p) � c(q) k2) measures how
similar two pixel values are.

Since depth images are treated as grayscale images, depth gradient and depth
LBP kernels are constructed in a similar way like the gradient and LBP ker-
nels for visual images. Here we just describe another one of the depth kernels -
spin/surface normal kernel[3].

In spin images[6], a reference point in a local 3D point cloudis represented
as the pair(�p; �n) formed by its 3D coordinate �p and surface normal�n. The spin
image attribute of a point p 2 P represented by the pair (�p; �n) is given by the
triple [� p; &p; � p], where the elevation coordinate� p is the signed perpendicular
distance from the point p to the tangent plane de�ned by the pair ( �p; �n), the
radial coordinate &p is the perpendicular distance from the point p to the line
through the normal �n, and � p is the angle between the normalsn and �n. The
point attributes [� p; &p; � p] can be aggregated into local shape features by the
following kernel:

K spin (P; Q) =
X

p2 P

X

q2 Q

ka
� �� p; �� q

�
kspin ([� p; &p] ; [� q; &q]) ; (4)

where �� p = [ sin (� p) ; cos(� p)], P is the set of nearby points around the refer-
ence point �p. Gaussian kernelska and kspin are used to measure the similarities
of attributes � , � and &, respectively.

3.2 Learning Compact Features

Evaluating kernels is computationally expensive when image patches are large.
For both computational e�ciency and representational conv enience, the feature
can be extracted as following:

1. uniformly and densely sample su�cient basis vectors fromsupport region
to guarantee accurate approximation to match kernels.

2. learn compact basis vectors using kernel principal component analysis.



EMK combines the advantage of both bag-of-words and set kernels. Here we
brie�y describe how the EMK transforms kernel descriptors to low dimensional
space to achieve compact features (see [4] for details).

Take feature based on gradient match kernel for example, other kinds of
feature can be extracted in the same way. Rewriting the Eq.1:
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the feature over image patches will be:

Fgrad (P) =
X
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where 
 is the Kronecker product. A straightforward way to dimension re-
duction is to sample su�cient image patches from training im ages and perform
KPCA for match kernels.

Su�cient Finite-dimensional Approximation Finite-dimensional features can be
learned by projecting Fgrad (P) into a set of basis vectors. A key issue in this
projection process is how to choose a set of basis vectors which makes the
�nite-dimensional kernel approximate well the original kernel. Given a set of
basis vectorsf ' o (x i )g

do
i =1 where x i are sampled normalized gradient vectors, a

in�nite-dimensional vector can be approximated by a in�nit e-dimensional vector
' o (� (p)) by its projection into the space spanned by the set of thesedo basis
vectors. Such a procedure is equivalent to using a �nite-dimensional kernel:

~ko

�
~� (p) ; ~� (q)

�
= ko

�
~� (p) ; X

� �
K � 1

o

� >

ij ko

�
~� (p0) ; X

�
; (7)

which can be rewritten as:
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K o is a do � do matrix with K oij = ko (x i ; x j ), and K = G> G. The resulting
feature map ' o (� (p)) = Gko (� (p) ; X ) is now only do-dimensional.

Compact FeaturesThe size of basis vectors can be further reduced by performing
kernel principal component analysis over joint basis vectors:

�
' o (x1) 
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�
ydp

�	
; (9)

where ' p (ys) are basis vectors for the position kernel anddp is the number
of basis vectors. Thet-th kernel principal component can be written as:
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where � t
ij is learned through kernel principal component analysis[10].

Under the framework of kernel principal component analysis, the gradient
kernel descriptor for the patch P has the form:
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With patch descriptors available, we apply bag-of-words model and spatial
pyramid [7] to get the �nal reprensentation of images. The details of parameter
setting will be discussed in Sec.5.2.

4 Classi�cation

4.1 Classi�er

In our work, we applied the LibLinear[5] as our classi�er, since SVM is widely
used for classi�cation task and performs e�ective especially when the scale of
data is small. For scene classi�cation, we train a multiclass one-vs-all L-SVM
classi�er. As there are 10 di�erent concepts of indoor scene, 10 binary L-SVMs
are trained for each concept. For object recognition task, we treat the existence of
each object as a binary classi�cation problem. Frames that contain the prede�ned
object are taken as positive samples, and the rest are taken as negative samples.

For better comprehension, let us introduce some notation here. Let I n be one
image of the test sequence,n 2 f 1; 2; 3; � � � ; N g, where N is the number of all
images in the test sequence.

For scene classi�cation, let Sc
n be the L-SVM output score for test image

I n on concept c, c 2 f 1; 2; 3; � � � ; Cg, where C is the number of concepts, and
C = 10 in this task. Then the predicted label cpred

n of a test imageI n is decided
following the rule below:

cpred
n = argmax

c
Sc

n : (12)

For recognition of object objk , k 2 f 1; 2; 3; � � � ; K g, where K is the number
of objects to be recognized, andK = 8 in this task. Let Sn;k be the L-SVM
output score of test imageI n for objk , and cpred

n;k indicates the predicted concept

of I n for objk , where cpred
n;k 2 f� 1; 1g, -1 for concept absence and 1 for concept

occurrence. Whether a certain kind of object exists in the test image can be
judged as below:

cpred
n;k =

8
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>:

1
0
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Sn;k > 0
Sn;k = 0

Sn;k < 0

; (13)



where the prediction 0 in Eq.(13) means that whether the object exists or
not is ambiguous, and we deal with this situation with not classifying it. This
happens only whenSn;k = 0 , which means that for the test image I n , object
objk has the same con�dence on both concept occurrence and absence.

4.2 Consideration of Temporal Continuity

Since all the images in training and test sequences are captured continuously, it is
reasonable and feasible to make full use of the temporal continuity. In our work,
we apply a smoothing method for the L-SVM score to improve theclassi�cation
performance.

We empirically think that the concept of an image is quite likely the same
with that of its temporal neighbors, and the L-SVM score should be less changed
compared to its neighbors. Based on this assumption, we smooth the L-SVM
score for both scene classi�cation and object recognition task as bellow:

Sc
n =

1
2r + 1

n + rX

k= n � r

Sc
k ; (14)

where r is the radius of smooth window. Eq.(14) indicates that the �nal L-
SVM score for imageI n on a certain conceptc is determined by all the scores of
neighbors within the smoothing window. With all the L-SVM sc ores updated,
we do classi�cation and recognition on the basis of these newscores.

Choosing appropriate r is very important, for it has a relevance with the
speci�c data and di�ers from scene classi�cation and object recognition. The
details of choosingr will be discussed in Sec. 5.3.

5 Experiments

5.1 Datasets and experimental setup

For Robot Vision Challenge this year, two training sequences are provided with
1947 and 3316 images respectively. An additional (labelled) validation sequence
with 1869 images is also provided. The �nal test sequence involves 3315 unla-
belled images. For all the sequences, RGB images and Point Cloud Data (PCD)
are available. As mentioned in Sec.1, there can be variations in the lighting condi-
tions or the acquisition procedure between test sequence and training sequences,
and the validation sequence is similar to the test to some degree.

For depth features extraction, we transformed all the givenPCDs into depth
images, and crop the useless blank border. See the example inFig.3.

For the scene classi�cation task, we pick the same size of images for each
class in the training sequences to avoid the imbalance between semantic classes.
In our work, we pick out the concept with minimum training dat a, count the
number of training images in the concept and set this number as the size of
training data for all the other concepts.
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Fig. 4. Evaluation of 6 kernel descriptors on validation sequence.

5.2 Kernel descriptors selection

To choose appropriate kernel descriptors, we evaluate 6 kinds of kernel descrip-
tors (gradient, LBP, color, depth gradient, depth LBP, spin /surface normal)
through scene classi�cation task on validation sequence. Fig.4 shows the eval-
uation of all the 6 kernel descriptors. Depth kernel descriptors perform a little
better than visual kernel descriptors, due to the variations in the lighting condi-
tions between the training sequences and validation sequence. For the �nal test,
we select the three descriptors (gradient, depth gradient,depth LBP) which get
the highest classi�cation accuracy on validation sequence, since the test sequence
is similar with validation sequence.

After 3 optimal kernel descriptors are chosen, we apply spatial pyramid (1; 2�
2; 3� 3) and perform the EMK transform with 1000 words. Then we get theimage
feature with a total length of 1000�

�
1 + 22 + 3 2

�
� 3 = 42000.

5.3 Smoothing window radius

As explained in Sec.4.2, the radius of smoothing window is important for the
�nal performance. We perform experiments on di�erent radiu sr for validation se-



0 10 20 30 40 50 60 70 80
0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

radius of smoothing window

sc
en

e 
cl

as
si

!c
at

io
n 

ac
cu

ra
cy

0 10 20 30 40 50 60 70 80
0.88

0.89

0.9

0.91

0.92

0.93

0.94

radius of smoothing window

ob
je

ct
 r

ec
og

ni
tio

n 
ac

cu
ra

cy

Fig. 5. (left)Variation of scene classi�cation accuracy with r on validation sequence.
(right)Variation of object recognition accuracy with r .

quences, and choose ther which corresponds to the highest accuracy. Fig.5 (left)
shows how the scene classi�cation accuracy varies with the radius of smoothing
window r . We set the step width as5, and �nd out that the accuracy reaches
the climax when r is around 25.

Since the radius is related to the length of continuous sceneimages with
the same concept, and there is a proportion between the quantity of validation
images and test images, the estimated radiusr should be multiplied the propor-
tion to �t the test sequence. According to Eq.15, we get the estimated radius
r scene

test = 44 for test sequence.

r scene
test = r scene

validation �
N test

Nvalidation
: (15)

For object recognition, Fig.5 (right) shows how the object recognition accu-
racy varies with the radius of smoothing window r , and it reaches the climax
when r is around 10. Then we use the same method to get the estimated radius
r object

test = 18 for test sequence.

5.4 Results on validation sequence

We applied our method on the validation sequence, and computed the classi-
�cation accuracy for each scene concept and object category. See Table 1 and
Table 2 for detailed results. We notice that our method has good performance
on each concept except 'StudentO�ce' and 'TechnicalRoom'. This is due to the
large variation of luminance between training and validation sequences on these
two concepts images.



Scene Concept Corridor Hall ProfessorO�ce StudentO�ce TechnicalRoom Toilet

Accuracy 0.986 * 0.850 0.472 0.453 0.979

Scene Concept Secretary VisioConference Warehouse ElevatorArea Total

Accuracy 0.934 * * 1.000 0.827

Table 1. Scene classi�cation results on validation sequence. Here *means that there is
no images with concept Hall, VisioConference or Warehouse in the validation sequence.

Object Category Extinguisher Computer Chair Printer Urinal Fridge Screen Trash Total

Accuracy 0.949 0.884 0.907 0.899 0.935 0.998 0.919 0.960 0.935

Table 2. Object recognition results on validation sequence.

5.5 Results on Robot Vision task

In the 5th edition of the Robot Vision Challenge,Our team ranked the �rst out
of six participants, results are listed in Table 3.

# Group Score ClassScore ObjectsSCORE TOTAL
1 MIAR ICT 3168.5 2865.000 6033.500
2 NUDT 3002.0 2720.500 5722.500
3 SIMD* 1988.0 3016.750 5004.750
4 REGIM 2223.5 2414.750 4638.250
5 MICA 2063.0 2416.875 4479.875
6 GRAM -487.0 0.000 -487.000

Table 3. Robot Vision �nal results.

6 Conclusion

In this paper we present our scheme on the 5th Robot Vision Challenge. Our
approach leverages the state-of-the-art methods in the �elds of RGB-D image
classi�cation. Among all the participants for the Challeng e, our team ranked
the �rst, showing the e�ectiveness of our approach. Since the prede�ned objects
have high dependence on indoor scenes, we achieve high accuracy on object
recognition by using the representation of whole image. This method is useful
for the speci�c task of this Challenge, and we plan to investigate more e�ective
methods to better tackle general object recognition problem in future work.
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